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Abstract

We discuss a c-ray tracking algorithm that has been developed for the proposed gamma-ray energy tracking array
(GRETA). This algorithm has been designed so as to maximize the resolving power for detecting high-multiplicity c-ray
events. The conceptual basis for this algorithm will be presented. In addition, Monte Carlo simulated data will be used to
assess performance over a large range of relevant parameters. A discussion of the potential c-ray polarimeter perfor-
mance of GRETA is also presented. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

A new 4p c-ray detector array is currently being
developed by the nuclear structure group at the
Lawrence Berkeley National Laboratory (LBNL).
This array, known as the gamma-ray energy track-
ing array (GRETA), will use the technique of c-ray
tracking to improve detection of high-multiplicity
c-ray cascades. The resolving power of GRETA
should exceed that of existing arrays [1,2] by more
than two orders of magnitude.

The concept behind GRETA has been discussed
in recent papers [3,4]. The fundamental idea is to
replace the modules of Compton suppressed Ge
detectors that comprise the current arrays with
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a spherical shell of &100 highly segmented Ge
detectors. Rather than suppress those c-rays that
escape from one detector into another, the goal of
the GRETA array is instead to track each c-ray
throughout its path and attempt to recover its full
energy.

Research and development into GRETA has fo-
cused on two areas. The "rst has been the experi-
mental study of charge/current pulse shapes in
a single GRETA prototype detector [4]. The goal
here has been to benchmark techniques for deter-
mining the position and energy of c-ray inter-
actions in a highly segmented, co-axial Ge detector.
The second area of research has been to benchmark
a c-ray tracking algorithm for resolving the tracks
of multiple, coincident, c-rays, and that is the sub-
ject of this paper. In the discussion that follows, the
focus will be on describing the algorithm that has
been developed, and also presenting its results as
a function of several important parameters. These
parameters will include: c-ray energy, E

c
; c-ray
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multiplicity, M (which is the number of coincident
c-rays incident on the array); and also the attain-
able position resolution in the array, *r.

2. De5nition of problem

2.1. GRETA geometry

Preliminary designs for GRETA are based on
a shell with an inner radius of 12 cm and an outer
radius of 21 cm. These dimensions are arrived at by
considering the size of currently available co-axial
Ge detectors, the need for space between target and
detector to accommodate auxiliary detectors, and
the cost of the array. For nuclear structure studies,
the beam would enter through a hole on one side,
interact with the target at the center, and exit
through a hole on the other side. In what follows,
an algorithm will be developed and tested using
a simple spherical shell of Ge with r

1
"12 cm and

r
2
"21 cm. Results for a more realistic geometry,

consisting of 120 close packed, tapered, high purity
Ge detectors (including Al housing cans), will be
presented at the end.

2.2. Scenarios considered

The c-ray tracking algorithm was developed
with some likely scenarios in mind. In particular,
the search for, and description of, superdeformed
and hyperdeformed bands. Experimental studies in
this regime are characterized by high-fold data
analysis. For example, the formation and decay of
a superdeformed band typically involves the emis-
sion of 3}5 neutrons, with E

n
"1}5 MeV, and

20}25 c-rays, with E
c
"0.1}2.0 MeV. These par-

ticles will hit the Ge shell nearly simultaneously
(with a small time delay between c-rays and neu-
trons), and thus a considerable number of inter-
action points can be expected. For example, 25
coincident 1.3 MeV c-rays would be expected to
give &100 c-ray interaction points in the Ge shell
(neglecting electron tracks). The accompanying
neutrons will add more interaction points, but we
would seek to eliminate these by using stringent
time cuts.

2.3. Monte Carlo simulation

The performance of the c-ray tracking algorithm
was assessed using Monte Carlo simulated events.
For the most part, these simulations used the
GEANT [5] Monte Carlo code. For simulations
involving the simple Ge shell, electron tracks were
not included. The reasoning here was that for the
energy range of interest, the e-tracks (as initiated by
Compton-recoil and photo electrons) are always
less than the best attainable position resolutions
(&1}2 mm). However, for the realistic GRETA
geometry discussed at the end, electron tracking
was included to gauge absorption e!ects. In situ-
ations involving transport of polarized c-rays, the
Monte Carlo code of [6] was used.

2.4. Position resolution

The interaction points generated by the Monte
Carlo simulation were further processed so as to
simulate a position resolution e!ect in the Ge shell.
For cases where the electron tracks were not in-
cluded, position resolution was e!ected by simply
dividing 3D space into cubic voxels of side *r. All
interaction points within a given cubic voxel were
then added together. For cases where the electron
tracks were included, a di!erent scheme, based on
clustering of interaction points, was used. This
scheme for e!ecting position resolution is indepen-
dent of the "xed coordinate system, and thus better
handles the real-life complication of electron tracks.
In tests that were done, the two schemes gave
similar results for the `no electron tracka case.

In contrast to the position resolution, the energy
resolution is not a sensitive parameter to the over-
all performance of the algorithm in the GRETA
array. This aspect is addressed further in Section 3.

2.5. Testing the algorithm

The algorithm was tested using a 32 bit, 75 MHz,
SUN sparcstation. Performance was gauged by cal-
culating the GRETA e$ciency (e) and peak to total
(P/¹) values for various scenarios. For each case,
the algorithm running time was also noted.
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3. The c-ray tracking algorithm

For a Ge shell (r
1
"12 cm, r

2
"21 cm) operated

as a single (unsegmented) detector, one would ex-
pect excellent performance for single c-ray events.
In particular, Monte Carlo simulation shows that
at E

c
"1.332 MeV, the e$ciency is 0.7 and the

peak to total is 0.78. However, for cases where two
or more c-rays hit simultaneously, this mode of
operation fails completely (due to summing).

In this section we discuss the details of a c-ray
tracking algorithm that has been developed to
handle the case of multiple, coincident, c-rays. The
basic function of the algorithm is to process the
c-ray interaction points in the shell so as to deter-
mine the number and energy of all incident c-rays.
The technique is as follows: organize the interac-
tion points into clusters; evaluate the clusters
using Compton tracking; and then sort each cluster
into one of several possible groups depending on
what operation needs to be done on that cluster in
order to recover the complete track of an incident
c-ray.

3.1. Clustering

Because of the forward peaking of the Compton
scattering cross section, as well as the decreasing
mean free path with decreasing energy, the c-ray
interaction points will tend to be clustered in
a two-dimensional h!/ space (polar coordinates).
Because of this, the criteria for clustering the points
was set as follows: any two interaction points with-
in a given angle separation (a), as viewed from the
origin, are grouped into the same cluster. The angle
a is a variable parameter in this scheme, and di!er-
ent values of a will produce di!erent sets of clusters
(e.g. for larger a, the number of clusters formed will
decrease).

The clustering algorithm works by "rst assigning
polar coordinates h, / to each interaction point.
The interaction points are then ordered by their
h value. For a given point (h

0
, /

0
), all non-commit-

ted points which have their h value in the range
h
0
$a degrees are searched to see if their / value is

consistent with a total angular separation of a de-
grees, or less, as viewed from the origin. In general,
this means that */ ("abs[/!/

0
]) must satisfy

the following relation:

*/4absAcos~1C
cos a!cos h cos h

0
sin h sin h

0
DB. (1)

If a point with the desired angular separation is
found, it is added to the (h

0
, /

0
) cluster. When the

initial search using (h
0
, /

0
) is complete, subsequent

searches are then performed using each of the new
points added. This process continues until no new
links are found (i.e. the cluster is completely for-
med). At this stage, we then look at the next non-
committed point in the ordered h queue, and begin
forming another cluster. The resulting set of clus-
ters is unique, and depends only on the initial
a value which is chosen.

Of the clusters that have been formed, some will
exactly correspond to the interaction points of
fully-absorbed c-rays (the `gooda clusters) and
others will not (the `bada clusters). For example,
bad clusters can arise when two good clusters are
misidenti"ed as one, or one good cluster is misiden-
ti"ed as two. Further processing of the bad clusters
can be done in order to recover more good clusters
(e.g. the bad clusters can be split, added, etc.). How-
ever, since this "rst step of the algorithm is rela-
tively fast, it is worthwhile to evaluate the total
performance at this stage (e.g. what are the results
if we assume that all clusters created are good
clusters).

Fig. 1 shows the e$ciency and peak to total for
the clustering-only scenario as a function of a and
also as a function of the position resolution of the
array. This "gure is for the case of 25 coincident
(isotropic) 1.332 MeV c-rays.2 The dashed line in
Fig. 1 shows the measured performance of the gam-
masphere array [1], one of the world's most power-
ful c-ray spectrometers for nuclear structure studies.
It is seen that the current results o!er large gains in
e$ciency but at the cost of peak-to-total. At lower
energies, where the c-ray clusters are more

2This particular energy was chosen because it corresponds to
the well-known 60Co calibration line. The data points in Fig. 1,
and in most other "gures here, represent 104 c-rays launched. In
this case, that means 400 M"25 events (which makes the error
on each point less than the size of the plotted symbol).
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Fig. 1. Results of `clustering onlya algorithm (i.e. no tracking)
for M"25, E

c
"1.332 MeV. Di!erent position resolutions are

shown.

con"ned, the clustering-only scenario works much
better. This is shown in Fig. 2, where we have
plotted the results for 0.1 MeV.

3.2. Compton tracking

In order to determine which original clusters
are good, and which need further processing,
we want to evaluate the clusters and assign each
one a `"gure-of-merita. Akin to the approach in
Ref. [7], we do the evaluation using the energy-
angle relationship of the Compton scattering
process:

E@
c
"

0.511

1#
0.511

E
c

!cos h
#

(2)

where E@
c
is the scattered c-ray energy in MeV, Ec is

the incident c-ray energy in MeV, and h
#

is the
polar scattering angle.

Fig. 2. Results of `clustering onlya algorithm for M"25,
E

c
"0.1 MeV. Single-hit photo-absorption events dominate at

this energy.

The technique is to assume that the cluster is
good (i.e. a full absorption), and that all the N inter-
action points in it are Compton interactions,
except for one, which is a photoabsorption.
For a given 3-point combination, we use Eq. (2)
to construct a "gure-of-merit (FM) function
which compares the calculated scattering angle,
h
#

(based on the energies of the interaction
points), to a measured scattering angle, h

.
(based

on the positions of the interaction points). By
treating the origin as the `zerotha point, we then
look for a one-two combination among the inter-
action points which minimizes the FM. Having
found this 0}1}2 combination, we then use a sim-
ilar FM minimizing procedure to "nd the unknown
third point in the 1}2}3 scatter. This approach
continues until we reach the last three-point
combination, (N}2)-(N}1)-(N). The total FM
for the whole cluster is then the sum of these
optimum, single scatter, FMs. The lower the
total FM, the more likely that the cluster is `gooda.
The three-point approach that is used here to
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obtain the total FM requires that we make
N(N!1)#+N~2

n/1
n separate calculations.3

We can formulate our FM calculation in math-
ematical terms as follows. We start by de"ning
a randomly ordered set of points, P

/
, which consists

of the nth assumed Compton scatter point as well
as all the other cluster points which are assumed to
follow it in time. We can then de"ne E

j,n
(E

k,n
) to be

the energy of the jth (kth) point from set P
n
. From

Eq. (2), the nth Compton scatter angle from point
j, h

cj,n
, can then be given as

h
cj,n

"cos~1A1.0#
0.511

+
k
E
k,n

!

0.511

+
k
E
k,n

!E
j,n
B. (3)

For a given three point combination, we can also
measure the nth Compton scatter angle from the
middle point, j, as follows:

h
.j,k,n

"cos~1(v(
j
) v(

k
) (4)

where v(
j

is the vector from the (n-1)th Compton
scatter point to the jth point of P

n
, and v(

k
being the

vector from the jth point of P
n
to the kth point of P

n
.

For n"1, the zeroth Compton scatter point is
de"ned to be the origin.

In this manner, we can now de"ne a FM for the
nth Compton scatter angle, FM

n
, as

FM
n,j,k

"C
h
.j,k,n

!h
cj,n

*h
j,k,n

D (5)

where the denominator is the calculated error on
the quantity in the numerator (and is based on the
position and energy uncertainties).

To determine the 1st Compton interaction,
n"1, we want to minimize Eq. (5) with respect to
( j, k) by trying all possible two point combinations
in P

n
. For the (n"1) case, the set P

n
consists of all

N interaction points. To determine subsequent
scatters, n'1, we now assume that all previous
points (n are known, and thus we only need to
minimize Eq. (5) with respect to k. For these n'1
minimizations, the set P

n
consists of all N points

3This is small compared to the N! combinations in a rigorous
N-point tracking approach. Investigations have concluded that
the somewhat larger success rate of the rigorous approach does
not merit the greatly increased computing time.

except those (n. For all cases, the result of the
minimization for Compton scatter n is

FM
n
"

h
.n

!h
cn

*h
n

. (6)

After minimizing Eq. (5) with respect to all points
n4(N!1), we can sum up the resulting FMs, (6),
and obtain a total FM which is related to the
likelihood that the whole cluster is good:

FM"A
1

N!1B+
n

FM
n
"A

1

N!1B
N~1
+
n/1
K
h
mn
!h

#n
*h

n
K

(7)

This FM is not de"ned for those clusters that
have only one point. The one-point clusters are
assumed to be Compton escape events, and are
thrown out (note: this di!ers from the clustering-
only scenario, where single hit events are kept).
Throwing out single hit events will lead to de-
creased e$ciency at the lower energies, but im-
proved peak to total at the higher energies.

It should be noted that for the Ge detector array
under consideration, the total error, *h

n
, is always

dominated by errors in *h
.n

(i.e. by the position
resolution). This can be seen by realizing the
following:

*h
.n

h
.n

&

*r

j
, while

*h
#n

h
#n

&

*E
c

E
c

(8)

where *r is the position resolution, k is the mean
free path for the compton interaction, and *E

c
is

the energy resolution. Since we eventually expect
*r & 1 mm, k&1 cm, and *E

c
&2 keV (for

a 1.3 MeV c-ray scattering in Ge), we see that
*h

.n
/h

.n
&0.1 and *h

#n
/h

#n
&0.01.

3.3. Further processing of clusters: the cluster modes

As shown in Fig. 1, only about 30% of the
originally de"ned clusters will correspond to actual
incident c-rays for an M"25, E

c
"1.332 MeV

event. The other clusters will need further process-
ing. For example, Fig. 3 shows the `cluster modesa
that are present when 25 1.332 MeV c-rays hit the
Ge shell. A given mode describes the operation that
must be done on a formed cluster in order to
recover an actual incident c-ray.
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Fig. 3. Cluster modes for 400 M"25, E
c
"1.332 MeV events (104 c-rays in total). In"nitesimal position resolution (*r"0 mm) and

a hypothetically perfect reconstruction are assumed. This plot indicates the maximum number of c-rays that can be recovered using each
technique.

Here are some of the modes that have been
identi"ed:

(a) Original mode } cluster is good `as-isa (i.e. it
matches an incident c-ray).

(b) Add mode } cluster can be added to another
cluster in order to recover an incident c-ray.

(c) Split mode } cluster can be split such that one
of the resulting subclusters then forms a good
incident c-ray.

(d) split}add mode } cluster can be split such that
one of the resulting subclusters can be added
to another cluster in order to recover an inci-
dent c-ray.

In Fig. 3, the relative probability of some of these
modes are plotted as a function of the angle para-
meter a.

In order to identify the mode of each cluster, we
can use the tracking-based "gures-of-merit intro-
duced in Section 3.2. For example, the `originala
cluster FM will help identify mode a. In order to
address mode b, clusters can be added together to
form superclusters. These superclusters are then
tracked using the same technique described in

Section 3.2. The resulting "gure-of-merit is called
the `adda FM. In order to address mode c, each
cluster can be split in a prescribed manner into two
subclusters. These subclusters can then be individ-
ually tracked using the techniques of Section
3.2. The resulting FMs are called the `splita FMs.
Finally, in order to address mode d, we can take the
subclusters created in the split mode analysis, and
look to add them to original clusters in order to
form good clusters. These split}add clusters can be
tracked in order to form `split}adda FMs.

The cluster splitting procedure is complex
enough to require further explanation. In order to
split a cluster, we "rst construct a `moment-of-
inertiaa matrix using the positions of the cluster
interaction points (where each point is assigned
a unit `massa). By diagonalizing this matrix, we are
able to identify the three principal axes. The inter-
action points are then projected onto these three
axes, and we look for the largest two gaps on each
axis. These gaps, six in total, form candidate split
points for the cluster. In separate analyses, the
cluster is then split using each of the candidate split
points, and the resulting sub-clusters are tracked.
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This yields a total of 12 FMs for each cluster. The
lowest FM is then assigned as the `splita FM for
the cluster, representing the probability that a split
operation is actually the correct operation for this
cluster. The sub-cluster with the best FM will have
a partner sub-cluster. This partner sub-cluster can
be added to other original clusters, and the result-
ing split}add cluster can be tracked. This forms the
`split}adda FM.

3.4. Cluster sorting

One technique for cluster sorting [3] is to calcu-
late all possible FMs for each cluster (e.g. original,
add, split, etc.), and then perform a splitting in the
multi-dimensional FM space so as to determine the
proper mode for the cluster. However, this proced-
ure has proved too computationally time consum-
ing. Therefore, a stepwise approach with regard to
the FM calculations has been undertaken. In par-
ticular, the FMs are calculated in order. Only those
clusters which fail a one-dimensional FM cut in one
step (i.e. where the FM is above the cuto!) are
propagated to the next step. Those clusters which
survive a given cut are selected to be of that mode.
In this manner, the time consuming add and
split}add operations are only performed on a small
subset of the entire cluster set. Fig. 4a shows a his-
togram of the `originala "gure-of-merit (OFM) for
a position resolution of 1 mm. The solid line shows
the good clusters, while the dashed line shows all
the other cluster types. Fig. 4b shows the `adda
"gure-of-merit (AFM) for those clusters that failed
an OFM(80 cut in Fig. 4a. These two "gures
show that good clusters can be selectively identi"ed
using the OFM, while the add clusters can be
selectively separated out from the remaining clus-
ters using the AFM.

In order to obtain the optimal cuts for each
mode, the algorithm was tested using Monte Carlo
data. By calculating e and P/¹ for many possible
combinations of cuts (i.e. using a grid search in the
cut space), an optimum set of cuts was derived for
given energy and multiplicity scenarios. We will
refer to these as the `locally-optimizeda set of cuts.
However, a real-life situation will have energy and
multiplicity distributions which are initially un-
known. For this reason, it is also useful to have

Fig. 4. (a) Histogram of the OFM for M"25, E
c
"1.332 MeV,

*r"1 mm, showing the `gooda and `bada clusters. (b) A histo-
gram of the AFM for those events which fell outside an
OFM(80 gate. By gating on AFM(100, we can now separ-
ate out most of the `adda cases.

a single set of cuts which will operate well over
a large range of possible energy and multiplicity
distributions. This single set of cuts will be referred
to as the `globally optimizeda set of cuts.

The procedure used to produce the sets of opti-
mized cuts necessitated the formulation of an ex-
plicit `trade-o!a function which relates the overall
performance to e and P/¹. In order to produce the
current set of optimized cuts, a trade-o! function
known as the resolving power (RP) was used. Un-
der a given set of assumptions, the resolving power
for GRETA, as a function of e, P/¹, is derived in
Ref. [4].

3.5. Cuts on macroscopic quantities

A small improvement in algorithm performance
is gained by requiring that acceptable clusters give
macroscopic quantities within a prescribed range.
Some macroscopic quantities that have been con-
sidered are: energy and position moments; number
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Fig. 5. Cluster modes for M"25, E
c
"1.332 MeV, *r"0 mm using the actual algorithm (104 c-rays total). Comparison with the

hypothetical `best-case scenarioa of Fig. 3, one sees that the split mode is not well recovered.

of interaction points; angular separation between
clusters (for adding purposes). By performing a grid
search among these parameters, and maximizing
the resolving power, ideal cuts can be arrived at for
given energy and multiplicity scenarios. As with the
"gure-of-merit cuts, the macroscopic quantity cuts
can be locally/globally optimized.

4. Algorithm results for Ge shell

4.1. Recovery of diwerent modes

Fig. 5 shows the possible cluster modes and their
recovery using the current algorithm for M"25,
E"1.332 MeV (locally optimized). The tradeo! in
the add and split modes, versus angle parameter,
yields an optimum performance at 103.

4.2. Results versus energy, position resolution, and
angle parameter

Fig. 6 shows the e and P/¹ results for the current
algorithm at M"25 and E"1.332 MeV. The

Fig. 6. Algorithm results for M"25 and E
c
"1.332 MeV as

a function of a and *r. The dashed line shows the measured
performance of gammasphere.
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Fig. 7. For M"25, a"103, this plot shows the algorithm
results vs. *r and E

c
.

performance is gauged as a function of the cluster-
ing angle parameter (a) and position resolution.
The dashed line represents the measured perfor-
mance of gammasphere. Fig. 7 shows the perfor-
mance of the current algorithm as a function of
energy and position resolution (for a"103). Fig. 8
gauges the performance of the algorithm as a func-
tion of M and a at a position resolution of 1 mm. In
this "gure, the results fall o! sharply as one ap-
proaches M"25. This is to be expected due to the
increased overlap of c-ray clusters.

4.3. Computer processing time

Fig. 9 shows the average event processing time for
the current algorithm in milli-seconds as a function
of position resolution. As the position resolution
worsens, the number of interaction points decreases
(due to individual interaction points being added
together),and this causes the computing time to
decrease. Fig. 10 shows the average event process-
ing time as a function of M, while Fig. 11 shows the
average event processing time versus a and E

c
.

There is a general trend to increase computing

Fig. 8. For E
c
"1.332 MeV, *r"1 mm, this plot shows the

algorithm results vs. M and a.

time as one increases a, and this is simply due to the
increased number of points per cluster (increasing
the number of points per cluster is more time con-
suming than increasing the number of clusters). The
trend towards longer computing time at higher
energies is also due to more interaction points. Fig.
12 shows the average event processing time for each
component subroutine as a function of a.

Figs. 9}12 have given the event processing time
based on a 75 MHz SUN sparcstation. Current
state-of-the-art is already more than a factor of
4 faster. If one extrapolates 5 yr into the future
using the rule-of-thumb `power lawa for computer
speed (i.e. state-of-the-art computer speed increases
about a factor of 2 each year), another factor of 32 is
realized. It is thus possible that a 100 fold increase
in computing speed could be attained by the time
GRETA is built.4

4 In fact, the GRETA discussion in Ref. [4] makes this as-
sumption, and thus quotes the processing time for M"25,
Ec"1.3 MeV, as `&1 ms per eventa (instead of the
&100 ms/event shown here). Based on this, a "nal GRETA
array with 103 parallel processing computers would run at
&1 ls/event.
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Fig. 9. Average event processing time for the algorithm as a function of *r (for M"25, E
c
"1.332 MeV, a"103).

Fig. 10. Average event processing time for the algorithm as a function of M (for E
c
"1.332 MeV, a"103, *r"1 mm).

4.4. Local optimization vs. global optimization

As referred to in Section 3, "gure-of-merit
cuts can be determined in a locally or globally

optimized fashion. Although the locally opti-
mized operation produces better performance
in all cases, the globally optimized approach
is much simpler to implement, much more
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Fig. 11. Average event processing time as a function of a and E
c
(for M"25, *r"1 mm).

Fig. 12. Average processing time for the various subroutines as a function of a (for E
c
"1.332 MeV, M"25, *r"1 mm).

practical in real-world situations, and can
give results which are not much worse. Fig. 13
shows e and P/¹ for both cases in a given scen-
ario.

4.5. Application of algorithm to simulated spectra

Real-world applications of the GRETA array
will not involve mono-energetic c-rays, but instead
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Fig. 13. For E
c
"1.332, M"25, *r"1 mm, the relative perfor-

mance of locally optimized vs. globally optimized cuts is demon-
strated.

will focus on arbitrary energy distributions. Fig. 14
shows the e and P/¹ that result when exposing the
GRETA array to the c-rays from the decay of
superdeformed band-1 in 152Dy. This was the "rst
superdeformed band discovered using c-ray spec-
troscopy [8], and involves 21 coincident c-rays in
the energy range E"0.6}1.5 MeV. Shown in
Fig. 14 are the results from the globally optimized
performance (solid line) and the locally optimized
performance (dashed line). The locally-optimized
results are obtained using cuts optimized for
E"1.0 MeV. It can be seen that the two cases give
fairly similar results.

4.6. Neutron background

Neutron background is a potential problem for
c-ray tracking techniques. At the energies of inter-
est, &1 MeV, neutrons interact with Ge primarily
by elastic scattering. Using energy and momentum
conservation, one can show that a maximum of
&5% of the neutron energy can be lost in each

Fig. 14. The solid line shows the predicted response to the
superdeformed band d1 in 152Dy [8] with *r"1mm.
These results, using globally optimized parameters, are com-
pared to locally optimized results at 1.0 MeV (for M"25,
*r"1 mm).

scatter. With a mean free path of about 4 cm,
a 1 MeV neutron will scatter &5}6 times and then
leave the Ge shell without absorbing.

To avoid intermingling of the c-ray and neutron
interaction points, time cuts must be used. In par-
ticular, since neutrons travel slower than c-rays,
one can seek to eliminate them by discarding all
interactions occurring after some "xed time follow-
ing the accelerator beam burst. Tests have shown
that a &15 ns time cut, if possible, would serve
quite well. The majority of neutron interaction
points are eliminated, and those that remain are
tightly clustered, and promptly eliminated during
the c-ray tracking phase of the algorithm (these
small neutron clusters mimic bad c-ray clusters,
and thus have bad "gures-of-merit).

Another potential problem is the less frequent
case of inelastic neutron scattering. This type of
event will produce c-rays that correspond to the
"rst few excited states in the Ge isotopes. Further
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study on this aspect of neutron background is rec-
ommended.

5. Gamma-ray polarization sensitivity

The projected high position resolution of
GRETA leads to the possibility that, in addition to
use as a spectrometer, the array could "nd use as
a powerful Compton polarimeter. Typical c-ray
Compton polarimeters [9,10] operate by measur-
ing an azimuthal asymmetry in the Compton
scattering (an up}down/left}right scattering asym-
metry), and relating this to the incident c-ray polar-
ization. The more accurately one can measure the
azimuthal scattering angle, the more accurate the
polarimeter.

The "rst step in operating GRETA as a
polarimeter is to identify the "rst two interaction
points in the Compton scattering of a c-ray. This
information is determined in the tracking stage of
the algorithm. Fig. 15 shows, for two di!erent ener-
gies (at M"1), the fraction of c-rays which have
had their 1st and 2nd points correctly identi"ed by
the algorithm. The results are shown as a function
of position resolution. At 1 mm, the results show
a 95% and 90% success rates for E

c
"1.4 and

0.4 MeV, respectively. The better performance at
E

c
"1.4 MeV is due to the better angular resolu-

tion a!orded by the larger mean free path at this
energy.

Given that the identi"cation success rate is quite
high for the 1st two interaction points, it is interest-
ing to see what the actual polarization sensitivity of
the GRETA detector is as a function of position
resolution and energy. The polarization sensitivity,
Q, is simply the proportionality constant which
relates the measured experimental asymmetry, A, to
the incident c-ray polarization, P. Fig. 16 shows the
measured Q as a function of *r for E"0.4 MeV. At
in"nitesimal resolution (*r"0), one recovers the
maximum Q allowed by the Klein}Nishina formula
(which gives the polarization sensitivity of the
Compton scattering process). As the resolution
worsens, Q approaches 40%. These projected
GRETA results are compared to the measured re-
sults of the gammasphere segmented Ge detectors
[6]. Fig. 17 shows the Q as a function of E

c
.

Fig. 15. For 1.4 MeV (top) and 0.4 MeV (bottom) c-rays, this
graph shows the fraction of events which have had their 1st two
points correctly identi"ed in the tracking (assuming M"1 and
at least 2 points in the cluster).

6. Realistic GRETA geometry

Until now, results have been presented only for
the simpli"ed geometry of a Ge shell of inner radius
12 cm and outer radius 21 cm. To gauge the perfor-
mance of the algorithm on a more realistic geo-
metry, we have designed a GEANT Monte Carlo
simulation which incorporates a close-packed 120
detector con"guration. The "rst 110 of these
detectors are hexagonal, tapered, co-axial Ge
detectors. This preliminary packing leaves 12
pentagonal holes. Ten of these holes are "lled
with pentagonal, tapered, co-axial Ge detectors.
Two pentagonal holes are left for entrance and exit
of the incident beam. Each Ge detector (Ge crystal
# Al housing can) has a gap of 0.5 mm on all sides
(i.e. the close-packed detectors are not actually
touching).

The hexagonal detectors are positioned so that
their front faces are exactly 12 cm from the
origin (target), while the pentagonal detectors are
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Fig. 16. Polarization sensitivity (Q) as a function of *r (assuming M"1, E
c
"400 keV). The dashed line represents the measured

performance of the gammasphere-segmented Ge detectors [6].

Fig. 17. Polarization sensitivity (Q) as a function of E
c

(assuming M"1, *r"1 mm). The dashed line represents the measured
performance of the gammasphere-segmented Ge detectors [6].

12.09 cm back. The length of the detectors is set at
9 cm, and the taper of each detector is 103. Each
detector consists of a Ge crystal (hole diameter of
8 mm) and a surrounding Al housing structure

which is 0.5 mm in thickness, and is o!set from the
Ge crystal by a gap of 1 mm.

Fig. 18 shows, by the diamond data points, the
results (at M"25, E"1.332 MeV) for the realistic
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Fig. 18. Results using the realistic, 120 detector, geometry are
shown by the diamond points (for M"25, E

c
"1.332 MeV,

*r"2 mm). These diamond points include the e!ects of recoil
e-tracks. Also shown are the results for the Ge shell (circles),
realistic geometry with no e-tracking (squares), and the mea-
sured performance of gammasphere (dashed line).

GRETA geometry including electron tracking.
A conservative position resolution of 2 mm is as-
sumed. One observes a substantial drop in perfor-
mance as compared with the simple Ge shell results
presented earlier (shown here as solid circles). The
two curves for the realistic geometry (with and
without electron tracking), show the relative contri-
bution of two factors which decrease performance:
loss of solid angle to the inter- and intra- detector
gaps; and also, loss of full energy events due to
electron absorption in Al. For the case of the e$-
ciency, the largest drop is due to the loss in solid
angle. For the peak-to-total, the electron absorp-
tion is more important.

Comparison of the predicted performance of
GRETA to the measured performance of gamma-
sphere demonstrates the potential improvements
associated with the GRETA concept. In terms of

the GRETA resolving power presented in Ref. [4],
the peak performance of GRETA in the `with
electron trackinga case (e"0.22, P/¹"0.61,
RP"1.7]106) is seen to o!er a &600 fold gain
over gammasphere (where, from Ref. [4],
RP"3]103).

7. Conclusion

Based on the algorithm presented in this paper,
the GRETA concept would appear to o!er (at
M"25, E"1.332 MeV, *r"2 mm) at least a 2.5
fold gain in e$ciency and a 1.2 fold gain in P/¹
over the performance of gammasphere. This
corresponds to a resolving power of 1.7]106,
a &600 fold gain over gammasphere. It is hoped
that these large potential gains will motivate fur-
ther work in designing and developing the GRETA
array.
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